BORJA BARRERA VILLAGRASA

INDICE

1. INTRODUCCION.

+1.1¢Qué es METEOR?
+ 1.2 Los siete principios de METEOR
+ 1.3 éPor qué METEOR?
2. EMPEZANDO.
+ 2.1 Instalacidn
+ 2.2 Creando una simple aplicacion
+ 2.3 Afiadir un paquete
+ 2.4 Estructura de una aplicacion METEOR
+ 2.5 CSS de nuestra aplicacion
3. DESPLIEGUE.
+ 3.1 Despliegue de aplicaciones en Meteor.com
4. PLANTILLAS.
+4.1 Las plantillas en METEOR
+ 4.2 Ayudantes de plantillas
+4.3 El ayudante domain
5. COLECCIONES.
+ 5.1 Colecciones en el lado del servidor
+ 5.2 Colecciones en el lado del cliente
+ 5.3 Comunicacion cliente-servidor
+ 5.4 Rellenando la base de datos
+ 5.5 Datos dindmicos

6. BIBLIOGRAFIA.

pag. 1

1. Introduccion

1.1¢Qué es METEOR?
1.2 Los siete principios de METEOR

1.3 ¢éPor qué METEOR?

1.1 iQué es METEOR?

Meteor es una plataforma para crear aplicaciones web en tiempo real construida sobre Node.js.
Meteor se localiza entre la base de datos de la aplicacién y su interfaz de usuario y se encarga
gue las dos partes estén sincronizadas.

Como Meteor usa Node.js, se utiliza JavaScript en el cliente y en el servidor. Y mas aun, Meteor
es capaz de compartir cédigo entre ambos entornos.

El resultado es una plataforma muy potente y muy sencilla ya que Meteor abstrae muchas de
las molestias y dificultades que nos encontramos habitualmente en el desarrollo de aplicaciones
web.

1.2 éPor qué METEOR?

Meteor es “full stack” y es facil de aprender.

Permite crear una aplicacion web en tiempo real en cuestién de horas. Y si ya hemos hecho
desarrollo web, estaremos familiarizados con JavaScript, y ni siquiera tendremos que aprender
un nuevo lenguaje.

Meteor nos permite escribir aplicaciones web mas eficientes, versatiles y modernas. La
comunidad, sin ser todavia amplia si que es lo suficientemente grande como para que existan
bastantes librerias y utilidades, ademas de recursos y documentacién.

Para lograr esto METEOR se basa en siete principios fundamentales:

pag. 2

1. Data on the wire: No se manda porciones de Html sobre la red, se mandan datos al
cliente (plantilla) y es él el que decide como los visualiza.

2. One language: Todo el cddigo tanto en el lado del cliente como en el servidor se
escribe en JavaScript (Aunque se soporta CoffeeScript por medio de un paquete).

3. Database everywhere: Utiliza de igual forma el API de acceso a la base de datos tanto
en el cliente como en el servidor.

4. Latency compensation: En el cliente se simula la interaccién para que se vea como si
no hubiera tiempo de latencia en el acceso a la base de datos.

5. FULL STACK reactivity: Actualiza en tiempo real automaticamente, toda la
informacién desde la base de datos y la sesidn del usuario al sistema de plantillas esto
es realizado por su sistema de orientacion a eventos que escucha y replica cambios en
la informacion.

6. Embrace the ecosystem: Meteor no pretende reinventar la rueda, por lo tanto animan
al usuario a que integre otras herramientas existentes, por lo tanto es muy comun ver
un uso de meteor complementado por otros frameworks existentes que facilitan el
desarrollo.

7. Simplicity equals productivity: La mejor manera de que algo parezca simple es que
en realidad sea simple, esto se logra con una API limpia que simplifica el cédigo y por lo
tanto aumenta la productividad.

pag. 3

2. Empezando.

2.1 Instalacion.

2.2 Creando una simple aplicacion.

2.3 Afadir un paquete

2.4 Estructura de una aplicacion Meteor

2.5 CSS de nuestra aplicacion

2.1 Instalacion.

Para empezar, si estamos usando Mac OS o GNU/Linux, podemos instalar Meteor con el
siguiente comando desde la consola:

curl https://install. meteor.com | sh

Por el contrario, si estds usando Windows, echa un vistazo a la guia oficial de instalacién: install
instructions (https://www.meteor.com/install) en la web de Meteor.

Se instalard el ejecutable meteor en nuestro sistema y lo dejara listo para empezar a usar
Meteor.

> Sin instalar Meteor :

Si no podemos (o0 no queremos) instalar Meteor de forma local, recomendamos usar Nitrous.io.
(https://www.nitrous.io/)

2.2 Creando una simple aplicacion.

Cuando tengamos instalado METEOR, vamos a crear nuestra aplicacion. Para ello, utilizaremos
la herramienta de linea de comandos meteor:

meteor create <Nombre>

pag. 4

Con ello crearemos un proyecto basico listo para usar. Cuando termina deberiamos ver un
directorio llamado con el nombre que le dimos cuando ejecutamos el comando, que contiene
una serie de ficheros, como por ejemplo:

La aplicacién que se ha creado es una aplicacién bdsica que demuestra sdlo algunas sencillas
pautas.

Si queremos ejecutar la aplicacion vamos a una terminal y escribimos:

cd microscope --> directorio donde se encuentran los fichero mencionados anteriormente

meteor --> comando para ejecutar la aplicacion.

Ahora abrimos localhost:3000 en el navegador y deberiamos ver algo como esto:

pag. 5

806 Microscope x

€« cC localhost:3000

Welcome to Meteor!

Click Me

You've pressed the button 0 times.

2.3 Adadir un paquete

A modo de ilustrar de como se afiaden paquetes a METEOR, afiadiremos el paquete del
framework bootstrap y el paquete Underscore (una libreria de utilidades JavaScript, que es muy
util cuando necesitemos manipular estructuras de datos).

El paquete bootstrap lo mantiene el usuario twbs, por lo que el nombre completo del paquete
es ‘twbs:bootstrap’.

El paquete underscore forma parte de los paquetes “oficiales” incluidos en Meteor, lo que
quiere decir que no hay que incluir el nombre del autor:

meteor add twbs:bootstrap

meteor add underscore

2.4 Estructura de una aplicacion Meteor.

Antes de empezar a escribir cédigo debemos estructurar de forma adecuada nuestro proyecto.
Para asegurarnos de que disponemos de un entorno limpio y claro, abrimos el directorio donde
tenemos los ficheros (en nuestro caso "microscope”) y borra los archivos:

pag. 6

A continuacion, crea cuatro directorios dentro de /microscope:

Ahora, creamos los siguientes directorios vacios.

Debemos mencionar que algunos de los directorios que hemos creado son especiales y Meteor
tiene reglas para ellos:

El cédigo de /server se ejecuta en el servidor.
El cddigo de /client se ejecuta en el cliente.
Todo lo demas se ejecuta en las dos partes, cliente y servidor.

Las cosas estaticas (fuentes, imagenes, etc.) van en el directorio /public’.

Y también es Util saber como Meteor decide en qué orden cargan los ficheros:

pag. 7

Los archivos de /lib" se cargan antes que nada.
Los archivos con nombre ‘main.*" se cargan después que todos los demas.

Todo se carga por orden alfabético segliin el nombre del fichero.

2.5 CSS de nuestra aplicacidn

En este tutorial no vamos a tratar de CSS. Asi que para evitar entrar en detalles de estilo, hemos
decidido que la hoja de estilos esté disponible desde el principio, asi, no serd necesario
preocuparse por ella nunca mas.

Meteor carga el CSS minimizado y de forma automatica, por lo que, a diferencia de otros
recursos estaticos, va en /client, no en /public. Vamos a crear el archivo:

/client
/stylesheets

style.css

y a afadirle este CSS:

.grid-block, .main, .post, .comments li, .comment-form {
background: #fff;
border-radius: 3px;
padding: 10px;
margin-bottom: 10px;
-webkit-box-shadow: 0 1px 1px rgba(0, 0, 0, 0.15);
-moz-box-shadow: 0 1px 1px rgba(0, 0, 0, 0.15);
box-shadow: 0 1px 1px rgba(0, 0, 0, 0.15); }

body {
background: #eee;
color: #666666; }

#main {
position: relative;
}
.page {
position: absolute;
top: Opx;

pag. 8

width: 100%;
}

.navbar {
margin-bottom: 10px; }
/* line 32, ../sass/style.scss */
.navbar .navbar-inner {
border-radius: Opx Opx 3px 3px; }

#spinner {
height: 300px; }

.post {
/* For modern browsers */
/* For IE 6/7 (trigger hasLayout) */
*zoom: 1;
position: relative;
opacity: 1; }
.post:before, .post:after {
content: "";
display: table; }
.post:after {
clear: both; }
.post.invisible {
opacity: 0; }
.post.instant {
-webkit-transition: none;
-moz-transition: none;
-o-transition: none;
transition: none; }
.post.animate{
-webkit-transition: all 300ms Oms;
-moz-transition: all 300ms Oms ease-in;
-o-transition: all 300ms Oms ease-in;
transition: all 300ms Oms ease-in; }
.post .upvote {
display: block;
margin: 7px 12px 0 0;
float: left; }
.post .post-content {
float: left; }
.post .post-content h3 {

margin: 0;

line-height: 1.4;

font-size: 18px; }

.post .post-content h3 a {
display: inline-block;
margin-right: 5px; }

.post .post-content h3 span {
font-weight: normal;
font-size: 14px;
display: inline-block;

color: #aaaaaa; }
.post .post-content p {
margin: 0; }

pag. 10

3. Despliegue.

3.1 Despliegue de la aplicacion en Meteor.com.

Si eres de los que prefieres desarrollar a nivel local, no dudes en saltarte este capitulo. Pero si
prefieres aprender a desplegar tu aplicacién Meteor en la Web, ahora explicaremos cémo
hacerlo.

3.1 Despliegue de aplicaciones en Meteor.com

Desplegar en un subdominio de Meteor es la opcidn mas sencilla. Es muy Util para mostrar la
aplicacién durante las primeras etapas del desarrollo o para configurar rdpidamente un servidor
de prueba.

Desplegar en Meteor es muy simple, solo tienes que abrir el terminal, ir al directorio de la
aplicacion y escribir:

meteor deploy myapp.meteor.com

Por supuesto que tienes que tener cuidado de reemplazar "myapp" con un nombre de tu
eleccidn, y preferiblemente uno que no esté en uso.

Si es la primera vez que despliegas una aplicacion, te pedird crear una cuenta en Meteor, y si
todo va bien, después de unos segundos podras acceder a la aplicacion desde

http ://myapp.meteor.com.

pag. 11

4. Plantillas.

4.1 Las plantillas en Meteor
4.2 Ayudantes de plantillas

4.3 El ayudante domain

Para introducirnos de manera sencilla en el desarrollo con METEOR, adoptaremos un enfoque
de afuera hacia dentro, es decir, primero construiremos el envoltorio exterior y luego lo
conectaremos al funcionamiento interno de la aplicacién.

Esto implica que, solo utilizaremos el directorio */client’.

Primero, si todavia no lo tienes creado, creamos un nuevo archivo ‘main.html* dentro del
directorio client, rellendndolo con el siguiente cddigo:

<head>
<title>Micro</title>
</head>
<body>
<div class="container">
<header class="navbar navbar-default" role="navigation">
<div class="navbar-header">
Microscope
</div>
</header>
<div id="main">
{{> postsList}}
</div>
</div>
</body>

>client/main.html

Esta sera la plantilla principal de la aplicacion. Como se puede ver, todo es HTML excepto la
etiqueta “{{> postsList}}’, que es un punto de insercidn de la plantilla “postsList’. Ahora, vamos
a crear un par de plantillas mas.

pag. 12

4.1 Las plantillas en Meteor

Vamos a crear el directorio “/templates’ dentro de “/client’. Aqui pondremos todas nuestras
plantillas, pero ademas, para mantener las cosas ordenadas creamos el directorio ‘/posts’
dentro de “/templates” para las plantillas relacionadas con los posts.

Ahora, dentro de “client/templates/posts’, crea el fichero "posts_list.html":

<template name="postsList">
<div class="posts">
{{#teach posts}}
{{> postitem}}
{{/each}}
</div>
</template>

>client/templates/posts/posts_list.html

Y “post_item.html":

<template name="postltem">
<div class="post">
<div class="post-content">
<h3>{{title}}{{domain}}</h3>
</div>
</div>
</template>

>client/templates/posts/post_item.html

Fijate en el atributo name="postsList" del elemento template. Este serd el nombre que Meteor
usara para saber donde va cada plantilla.

pag. 13

> NOTA:

Spacebars el sistema de plantillas de Meteor. Spacebars es simplemente HTML mas tres
cosas: inclusiones (también llamadas “partials” o plantillas parciales), expresiones
(expressions) y bloques de ayuda (block helpers).

Las inclusiones usan la sintaxis {{> templateName}} y simplemente le dicen a Meteor
que reemplace la inclusiéon por la plantilla del mismo nombre (en nuestro caso
postltem).

Las expresiones como {{title}} pueden, o bien llamar a una propiedad del objeto
actual o bien, al valor de retorno de un ayudante (helper) como el que definiremos
mas adelante en nuestro gestor de plantilla.

Los bloques de ayuda son tags especiales para mantener el control del flujo de la
plantilla, por ejemplo {{t#teach}}...{{/each}} o {{#if}}...{{/if}}.

Con los conocimientos sobre los Spacebars, ya podemos entender cdémo van a funcionar
nuestras plantillas:

Primero, en la plantilla postsList iteramos sobre un objeto posts usando un bloque
{{t#teach}}...{{/each}}, y para cada iteracidn, incluimos la plantilla postitem.

El objeto post es un ayudante de plantilla, y puedes pensar en ellos como un cajén o hueco para
valores dindmicos.

La plantilla postltem es bastante sencilla. Solo usa tres expresiones: {{url}} y {{title}} devuelven
propiedades, y {{domain}} llama a un ayudante.

4.2 Ayudantes de plantillas

Hasta ahora hemos estado tratando con Spacebars, que es poco mdas que HTML con algunas
etiquetas extra. Pero para que una plantilla tenga vida, necesita ayudantes.

Es decir, mientras la funcién de las plantillas es mostrar o iterar sobre variables, los ayudantes
son los que hacen el trabajo pesado asignando un valor a cada variable.

pag. 14

Para mantener las cosas ordenadas, adoptaremos la convencién de nombrar al fichero que
contiene la plantilla con el mismo nombre, pero con la extensidn .js. Asi que vamos a crear un
fichero posts_list.js dentro de /client/templates/posts para construir nuestro primer ayudante:

var postsData = [
{
title: 'Introducing Telescope',
url: 'http://sachagreif.com/introducing-telescope/
Ik
{

title: 'Meteor',

url: 'http://meteor.com'
b
{

title: 'The Meteor Book',
url: 'http://themeteorbook.com’
}
I;
Template.postsList.helpers({
posts: postsData

i

>client/templates/posts/posts_list.js

Si todo estd bien, ya se pueden ver los datos en el navegador:

pag. 15

9 00/ Gwuicroscope x Sacha

« c f localhost:3000

Microscope
Introducing Telescope
Meteor

The Meteor Book

Lo que estamos haciendo es dos cosas:

e Primero, creamos algunos datos prototipo en postsData. Normalmente, estos datos
vienen de la base de datos, pero como no hemos visto cdmo hacerlo todavia, hacemos
trampa mediante el uso de datos estaticos.

e Segundo, usamos la funcién “Template.postsList.helpers()” para definir un ayudante de
plantilla llamado posts que, sencillamente devuelve nuestros datos creados en
postsData.

Y si recuerdas, estamos usando el ayudante “posts’ en nuestra plantilla “postsList’:

<template name="postsList">
<div class="posts page">
{{#each posts}}
{{> postitem}}
{{/each}}
</div>
</template>

>client/templates/posts/posts_list.html

pag. 16

Al definir el ayudante “posts’, conseguimos que esté disponible para usarlo en la plantilla, asi
que nuestra plantilla sera capaz de recorrer el array “postData’ pasando la plantilla “postitem’
para cada uno de sus elementos.

4.3 El ayudante domain

Ahora, crearemos un fichero “post_item.js’ para albergar la |6gica de la plantilla “postitem’:

Template.postitem.helpers({
domain: function() {
var a = document.createElement('a’);
a.href = this.url;
return a.hostname;

}
0

>client/templates/posts/post_item.js

Esta vez el valor de nuestro ayudante ‘domain’, no son datos sino una funcién andénima. Este
patrén es mucho mas comun.

- =
800 Microscope * @ x

&« (&) localhost:3000

Microscope
Introducing Telescope
Meteor

The Meteor Beok

pag. 17

>NOTA:
El ayudante domain coge una URL y devuelve su dominio a través de un poco de magia
JavaScript. Pero, ¢de donde saca esa url la primera vez?.

El bloque “{{#each}} no solo itera nuestros datos, sino que también establece el valor de this

dentro del bloque al objeto siendo iterado.

Esto significa que entre las dos etiquetas “{{each}}’, el valor de this es asignado a cada “post’
sucesivamente, y esto se hace extensivo al gestor de la plantilla (‘post_item.js’).

Ahora entendemos porqué this.url devuelve la URL del post actual.

pag. 18

5. Colecciones.

5.1 Colecciones en el lado del servidor
5.2 Colecciones en el lado del cliente
5.3 Comunicacion cliente-servidor

5.4 Rellenando la base de datos

5.5 Datos dindmicos

En el apartado (1) "Introduccién" hablamos sobre la sincronizacion automatica de datos entre
cliente y servidor.

En este apartado miraremos mas de cerca esto y observaremos como funciona la tecnologia que
lo hace posible, las Colecciones Meteor.

Una coleccidn es una estructura de datos especial que se encarga de almacenar los datos de
forma permanente, en una base de datos MongoDB en el servidor, y de la sincronizacidn de
datos en tiempo real con el navegador de cada usuario conectado.

Queremos que nuestros posts sean permanentes y los podamos compartir con otros usuarios,
asi que vamos a empezar creando una coleccion llamada "Posts” para poder almacenarlos.

Las colecciones son el eje central de cualquier aplicacién, asi que para asegurarnos de que se
definen primero, las pondremos en el directorio lib. Si todavia no lo has hecho, crea un directorio
llamado */collections’ dentro de lib, crea un archivo llamado “posts.js* y afiade lo siguiente:

Posts = new Mongo.Collection('posts');

>lib/collections/posts.js

pag. 19

5.1 Colecciones en el lado del servidor

La coleccién actia como una API de nuestra base de datos Mongo. En el cddigo del lado del
servidor, esto nos permite escribir comandos Mongo como “Posts.insert()" o "Posts.update()’,
gue haran cambios en la coleccidn posts almacenada dentro de Mongo.

Para mirar el interior de la base de datos Mongo, abrimos una segunda ventana de terminal
(mientras Meteor se estd ejecutando en la primera), vamos al directorio de la aplicacion y
ejecutamos el comando meteor mongo para iniciar una shell de Mongo, en la que podemos
escribir los comandos estandares de Mongo (y como de costumbre, salir con ctrl+c). Por ejemplo,
vamos a insertar un nuevo post:

meteor mongo

> db.posts.insert({title: "A new post"});

> db.posts.find();
{"_id": Objectid(".."), "title" : "A new post"};

>Consola de mongo

5.2 Colecciones en el lado del cliente

Cuando se declara "Posts = new Mongo.Collection('posts');" en el cliente, lo que se esta creando
es una caché local dentro del navegador de la coleccion real de Mongo. Cuando decimos que las
colecciones del lado del cliente son una "caché", queremos decir que contiene un subconjunto
de los datos, y ofrece un acceso muy rapido.

Es importante entender este punto, ya que es fundamental para comprender la forma en la que
funciona Meteor. En general, una colecciéon del lado del cliente consiste en un subconjunto de
todos los documentos almacenados en la coleccién de Mongo

En segundo lugar, los documentos se almacenan en la memoria del navegador, lo que significa
que el acceso a ellos es practicamente instantaneo.

pag. 20

5.3 Comunicacion cliente-servidor

La parte mdas importante de todo esto es cdmo se sincronizan los datos de la colecciéon del cliente
con la coleccién del mismo nombre (en nuestro caso ‘posts’) del servidor.

Empezaremos abriendo dos ventanas del navegador, y accediendo a la consola en cada uno de
ellos. A continuacién, abrimos la consola de Mongo en la linea de comandos.

En este punto, deberiamos ser capaces de encontrar el Unico documento que hemos creado
antes desde la consola de Mongo (ten en cuenta que el interfaz de nuestra aplicacidon estard
mostrando todavia los tres posts de prueba anteriores. Igndralos por ahora).

> db.posts.find();
{title: "A new post", _id: Objectld("..")};

>Consola de Mongo

> Posts.findOne();
{title: "A new post", _id: LocalCollection._ObjectID};

>Consola del primer navegador

Creemos un nuevo post en una de las ventanas del navegador ejecutando un insert:

> Posts.find().count();

1

> Posts.insert({title: "A second post"});
'Xxx'

> Posts.find().count();

2

>Consola del primer navegador

pag. 21

Como era de esperar, el post aparece en la coleccidn local. Ahora vamos a comprobar Mongo:

> db.posts.find();
{title: "A new post", _id: Objectld("..")};
{title: "A second post", _id: 'yyy'};

>Consola de Mongo

Como puedes ver, el post ha viajado hasta la base de datos sin escribir una sola linea de cédigo
para enlazar nuestro cliente hasta el servidor (bueno, en sentido estricto, hemos escrito una sola
linea de codigo: new Mongo.Collection("posts")).

Escribamos esto en la consola del segundo navegador:

> Posts.find().count();
2

>Consola del segundo navegador

A pesar de que no hemos refrescado ni interactuado con el segundo navegador, y desde luego
no hemos escrito cédigo para insertar actualizaciones.

Lo que ha pasado es que la coleccidn del cliente ha informado de un nuevo post a la coleccion
del servidor, que inmediatamente se pone a distribuirlo en la base de datos Mongo y a todos los
clientes conectados a la coleccion “post’.

5.4 Rellenando la base de datos

En este apartado, lo primero que vamos a hacer es meter unos cuantos datos en la base de
datos. Lo haremos mediante un archivo que carga un conjunto de datos estructurados en la
colecciéon de “Posts” cuando el servidor se inicia por primera vez.

pag. 22

En primer lugar, vamos a asegurarnos de que no hay nada en la base de datos. Para borrar la
base de datos y restablecer el proyecto usaremos meteor reset. Por supuesto, hay que ser muy
cuidadoso con este comando una vez que se empieza a trabajar en proyectos del mundo-real.

Paramos el servidor Meteor (pulsando ‘ctrl-c’) y, a continuacidn, en la linea de comandos,
ejecutamos:

meteor reset

El comando ‘reset’ borra completamente la base de datos Mongo.

Vamos a iniciar nuestra aplicacion Meteor de nuevo:

meteor

Ahora que la base de datos esta vacia, podemos afiadir lo siguiente a “server/fixtures.js' para
cargar tres posts cuando el servidor arranca y encuentra la coleccién “Posts’ vacia:

if (Posts.find().count() === 0) {
Posts.insert({
title: 'Introducing Telescope',
url: 'http://sachagreif.com/introducing-telescope/'

0

Posts.insert({
title: 'Meteor',
url: 'http://meteor.com’

N;

Posts.insert({
title: 'The Meteor Book',
url: 'http://themeteorbook.com
1
}

>server/fixtures.js

pag. 23

Hemos ubicado este archivo en el directorio */server’, por lo que no se cargara en el navegador
de ningun usuario. El cddigo se ejecutard inmediatamente cuando se inicia el servidor, y hara
tres llamadas a ‘insert’ para agregar tres sencillos posts en la coleccion de “Posts’.

Ahora ejecutamos nuevamente el servidor con “meteor’, y estos tres posts se cargaran en la
base de datos.

5.5 Datos dindmicos

Si abrimos una consola de navegador, veremos los tres mensajes cargados desde MiniMongo
(Es la implementacion de Mongo en el lado del cliente de Meteor):

> Posts.find().fetch();

>Consola del navegador
Para ver estos mensajes renderizados en HTML, podemos utilizar un ayudante de plantilla.

Simplemente reemplazamos el objeto JavaScript estatico “postsData” por una coleccién
dindmica.

Asi es como debe quedar “client/templates/posts/posts_list.js":

Template.postsList.helpers({
posts: function() {
return Posts.find();

}
N;

>client/templates/posts/posts_list.js

Ahora, en lugar de cargar una lista de mensajes como un array estatico desde una variable,
estamos devolviendo un cursor a nuestro ayudante ‘posts’ (aunque la cosa no parece muy
diferente puesto que estamos devolviendo exactamente los mismos datos):

pag. 24

8686 Microscope x

« e localhost:3000

Microscope
Introducing Telescope
Meteor

The Meteor Book

Nuestro ayudante “{{#each}}" ha recorrido todos nuestros ‘Posts’, y los ha mostrado en la
pantalla. La coleccidn del lado del servidor ha tomado los posts de Mongo, los ha pasado a
nuestra coleccién del lado del cliente, y nuestro ayudante Spacebars los ha pasado a la plantilla.

Ahora iremos un paso mas alla, y vamos a afiadir otro post a través de la consola del navegador:

> Posts.insert({
title: 'Meteor Docs',
author: 'Tom Coleman’,
url: 'http://docs.meteor.com’

i

>Consola del navegador

pag. 25

Vuelve a mirar el navegador, deberias ver esto:

8686 Microscope x

« e localhost:3000

Microscope

Introducing Telescope

Meteor

The Meteor Book

Meteor Docs

Elements Resources Network Sources Timeline Profiles Audits | Console |

> Posts.insert({
title: ‘Meteor Docs’,
author: 'Tom Coleman',
url: 'http://docs.meteor.con’
H;
"YNLPLFMpYZNZ0gHnp"
>

2,5 Q © <topframe>v <page context> v () | Errors Warnings Logs Debug &

Acabas de ver la reactividad en accién. Cuando le pedimos a Spacebars que recorra el cursor
*Posts.find()", él ya sabe cdmo monitorizar este cursor en busca de cambios, y de esa forma,
alterar el cédigo HTML para mostrar los datos correctos en la pantalla.

Y con esto terminamos nuestra tutorial de introduccion al framework METEOR.

Si desean profundizar mas sobre este framework les animamos a que consulten la bibliografia

pag. 26

6. Bibliografia

e HTTPS://WWW.METEOR.COM/

e HTTP://DOCS.METEOR.COM/#/BASIC/

® HTTPS://GITHUB.COM/METEOR

® HTTP://ES.DISCOVERMETEOR.COM/

® HTTPS://EN.WIKIPEDIA.ORG/WIKI/METEOR_(WEB_FRAMEWORK)

® HTTP://SLIDES.COM/EDSADR/APLICACIONES-EN-TIEMPO-REAL-CON-METEOR#/

pag. 27

https://www.meteor.com/
http://docs.meteor.com/#/basic/
https://github.com/meteor
http://es.discovermeteor.com/
https://en.wikipedia.org/wiki/Meteor_(web_framework)
http://slides.com/edsadr/aplicaciones-en-tiempo-real-con-meteor#/

